2-Trifluoromethyl-1-alkenes

Sequential Substitutions of 2-Trifluoromethyl-1-alkenes: Regioselective Synthesis of 3-Fluoropyrazoles

Masaki Takahashi, Masahiro Hattori, Kohei Fuchibe, Junji Ichikawa* Graduate School of Pure and Applied Sciences, University of Tsukuba

2-Trifluoromethyl-1-alkenes and 1,1-difluoro-1-alkenes exhibit electrophilic character of the electronegative fluorine because undergo CF_3 $\stackrel{R}{\longleftarrow}$ N_1 $\stackrel{S_N2'-type}{\longrightarrow}$ CF_2 $\stackrel{R}{\longleftarrow}$ N_{11} (1) readily

nucleophilic substitution at the carbon γ to the fluorines to produce the corresponding 1,1-difluoro-1-alkenes (eq to produce the corresponding 1,1-unituoio-1-aixenes (eq 1, S_N2 '-type reaction). [1] 1,1-Difluoro-1-aixenes undergo $CF_2 \rightleftharpoons_R R$ Nu^{-} , F_{Nu}^{-} Rnucleophilic substitution at the vinylic carbon (CF₂) to

$$CF_2 \stackrel{R}{\longrightarrow} \stackrel{S_NV}{\longrightarrow} \stackrel{F}{\longrightarrow} \stackrel{R}{\longrightarrow} (2)$$

afford substituted monofluoroalkenes (eq 2, S_NV reaction). [2] With these facts in mind, we focused on the synthesis of fluoropyrazoles by the combination of the S_N2'-type reaction and the S_NV reaction (eq 3): The S_N2 '-type reaction of 2-trifluorometyl-1-alkene 1 with hydrazines would provide 1,1-difluoro-1-alkenes 2. Intramolecular S_NV reaction of 2 could afford the targeted fluoropyrazoles 3 after aromatization. Despite the importance of fluorinated pyrazoles as pharmaceuticals and agrochemicals, their synthetic methods have been still quite limited.^[3]

The S_N2'-type reaction of 2-trifluoromethyl-1-alkenes were well performed with Boc-hydrazines or phenylhydrazines by using NaH (method A, eq 4) or n-BuLi (method B) as a base, respectively (Table 1). Treatment of 1 with in-situ generated lithiohydrazines or sodiohydrazines gave the corresponding difluoroalkenes 2 in 72–97% yield.

Although the expected S_NV reaction of 2 did not proceed on treatment with bases (not shown), the cyclization was accomplished by introducing a tosyl group onto 2. Treatment of sulfonohydrazide 4 (71%–quant) with NaH (2.2 equiv) gave the desired fluoropyrazoles 3 in 55–98% yield. It is worth noting that accompanying desulfination achieved aromatization to afford 3 in a one-pot operation.

Method A
NaH
$$R^{1} = Boc$$

$$R^{1} + R^{2}$$

$$R^{1} = Ph$$

$$R^{1} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{1} = R^{2}$$

$$R^{1} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{2$$

Entry	Hydrazine	Trifluoropropene 1		Pyrazole -	Yield / %		
					2 a	4 ^a	3
1	NH ₂ -NHBoc		R'' = H	F	97	99	86
2	NH ₂ -NHBoc		R" = OMe	N= BocN	95	96	85
3	NH ₂ -NHBoc	CF ₃	R'' = Br	BOCIN R"	72	98	55
4	NH ₂ -NHBoc	R.	$R'' = CF_3$	₩	79	quant	56
5	R' = H	K	R'' = H	N≕F	76	92	98
6	R' = p-Me		R'' = H	N	80	87	98
7	NH_2 -NH $R' = o$ -Me		R" = H	R'	88	71	96

Method A: NaH (1.8 equiv), THF, 0 °C. Method B: n-BuLi (1.8 equiv), THF, -50 to -60 °C. a: ¹⁹F NMR yield.

4-Unsubstituted fluoropyrazole was also synthesized starting from silyltrifluoropropene (eq 5). Desilylation took place during the cyclization step.

In summary, we have developed a novel method for the synthesis of fluoropyrazoles. Sequential substitutions of 2-trifluoromethyl-1-alkenes with hydrazine derivatives successfully provide 3-fluoropyrazoles.

^[1] Begue, J.; Delpon, D.; Rock, M., *Tetrahedron Lett.* **1995**, *36*, 5003. See also: Ichikawa, J.; Ishibashi, Y.; Fukui, H., *Tetrahedron Lett.* **2003**, *44*, 707.

^[2] See for example: Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T., Chem. Commun. 1997, 1537; Ichikawa, J.; Lapointe, G.; Iwai, Y., Chem. Commun. 2007, 2698; Ichikawa, J.; Wada, Y.; Kuroki, H.; Mihara, J.; Nadano, R., Org. Biomol. Chem. 2007, 5, 3956; Okuhara, K., J. Org. Chem. 1976, 41, 1487.

^[3] Clark, D.; Lahm, G.; Smith, B.; Barry, J.; Clagg, D., *Bioorg. Med. Chem.* **2008**, *16*, 3163; Volle, J.; Schlosser, M., *Eur. J. Org. Chem.* **2000**, 823; Ichikawa, J.; Kobayashi, M.; Noda, Y.; Yokota, N.; Amano, K.; Minami, T., *J. Org. Chem.* **1996**, *61*, 2763; Fabra, F.; Vilarrasa, J., *J. Heterocycl. Chem.* **1978**, *15*, 1447; Makino, K.; Yoshioka, H., *J. Fluorine Chem.* **1988**, *39*, 435.